Sant Gadge Baba Amravati University, Amravati

Faculty of Science and Technology

Syllabus and scheme of Teaching, Learning, Examination and Evaluation under NEP- 2020

For
M.Sc. in Microbiology
(2 year PG Course)
Semester I and Semester II

Commenced from 2023-24 Modified w.e.f. AY 2024-2025

Submitted by Board of Studies Biochemistry including Microbiology and Food Sciences

SANT GADGE BABA AMRAVATI UNIVERSITY

Part A

Faculty : Science and Technology Programme : M.Sc. (Microbiology)

Programme: M.Sc. (Microbiology) under faculty of Science and Technology in accordance with New Education Policy (NEPv23).

Programme information

1. M.Sc. (Microbiology) Programme Outcomes

(POs): On completion of M.Sc. (Microbiology), students

will be able to:

PO1 (Domain knowledge): demonstrate knowledge of basic concepts, principles and applications of the specific science discipline.

PO2(Resource Utilization): cultivate the skills to acquire and use appropriate learning resources including library, e-learning resources, ICT tools to enhance knowledge-base and stay abreast of recent developments.

PO3 (Analytical and Technical Skills): achieve the ability to handle/use appropriate tools/techniques/equipment with an understanding of the standard operating procedures, safety aspects/limitations.

PO4 (Critical thinking and Problem solving): identify and critically analyze pertinent problems in the relevant discipline using appropriate tools and techniques as well as approaches to arrive at viable conclusions/solutions.

PO5 (Project Management): demonstrate the knowledge and scientific understanding to identify research problems, design experiments, use appropriate methodologies, analyze and interpret data and provide solutions, exhibit organizational skills and the ability to manage time and resources.

PO6 (Individual and team work): exhibit the potential to effectively accomplish tasks independently and as a member or leader in diverse teams, and in multidisciplinary settings.

PO7 (Effective Communication): communicate effectively in spoken and written form as well as through electronic media with the scientific community as well as

with society at large. Demonstrate the ability to write dissertations, reports, make effective presentations and documentation.

PO8 (Environment and Sustainability): analyze the impact of scientific and technological advances on the environment and society and the need for sustainable development.

PO9 (Ethics): exert a commitment to professional ethics and responsibilities.

PO10 (Self-directed and Life-long Learning): develop an ability to engage in life-longlearning in the context of the rapid developments in the discipline by their own.

M.Sc. (Microbiology) Programme Specific Outcomes (PSOs):

At the end of the programme, the students will be able to:

PSO1: acquire basic microbiology laboratory skills and expertise in the use of instrumentsapplicable to research, clinical methods and analysis of the observations.

PSO2: comprehend prokaryotic and eukaryotic genetic systems physiology of microorganisms.

PSO3: gain familiarity with applications of microbes for synthesis of valuable productsthrough fermentation.

PSO4: explore the application of genetic engineering to create GMO, transgenic plants, animals, Gene therapy, etc.,

PSO5: establish the role of microorganisms in human health, immune response to infectionand antibiotic resistance.

Overall, the Programme is oriented to reasoning, critical thinking and applications, equipping the students eligible for higher studies/research, jobs in various sectors and entrepreneurship abilities.

2. Employability potential of the M.Sc. (Microbiology) Programme:

This programme of Microbiology is vast and its applications are in diverse fields like medicine, dairy, agriculture, clinical research, water industry, biochemical technology, biotechnology, etc. After completing the program, candidates can expect numerous jobs in several fields. It has always been in demand as it promises vast career opportunities to candidates in various employment sectors as it involves the study of microscopic living organisms. Studying these microbes helps develop medicines, vaccines, antibiotics, etc., which are immensely significant in the present world.

Microbiology is a branch of science that deals with study of microorganisms. The microbiological study has wide range of scope ranging from basic sciences to applied sciences. Microbiological study is mainly on causative agents of various diseases, microorganisms of agricultural, environmental and industrial use. The production of antimicrobial drugs to cure various diseases is covered in this discipline. Here is an overview of job opportunities where our students have explored and would be helpful for upcoming students as well.

Medical microbiology refers to the use of microbiology in the healthcare industry. Microbiology firms are at the heart of the healthcare industry, whether they were developing diagnostic kits, vaccines, biologics, pharmaceuticals, or medical gear.

Microbiology fields such as molecular biology, cell biology, recombinant technology, and immune therapeutics benefited from the medical sector evolution. For those interested in a career in Medical Microbiology, there are numerous career prospects in Research and Development, Pharmaceutical Companies, Hospitals, Diagnostic Centres, Manufacturing Sector of Microbiology, and Academic Sector. Many of our students have joined as Microbiologist at renowned companies. Our students have also joined COVID-19 diagnostic laboratories across various districts, thus helping the society. Beside this our students have also joined vaccine industry.

Previously, this field only focused with the discovery and development of small molecules (drugs), but the industry has evolved throughout time. This industry horizon has widened. Biopharmaceutics has added a new dimension to the industry. The use of microbiology in drug research and discovery has always been a component of the process, but the addition of biologics as therapeutic elements has resulted in a rise of biotech businesses in the pharmaceutical sector.

To begin, consider cell-based treatments, monoclonal antibodies, vaccinations, and other medicines. In this regard our students have got jobs at respective industry. Low crop yield, crop quality deterioration, weeds, loss of soil fertility, abiotic stress, and biotic stress are just a few of the issues that have plagued agriculture. Microorganisms are also helpful in enhancing the crop productivity. Our students are entrepreneur in this field. The biofertilizers are produced in bulk and are commercialized by few of our students. Incidentally biofertilizers are ecofriently.

Food microbiology overcomes challenges in food production, processing, and preservation. The production of value-added food products are the greatest examples. Almost all food industries need pure water. The bacterial quality of water is tested by microbiologist. Food industry provides large scope for microbiologist. Our students have occupied jobs at food industries.

Microbiology always helps in introducing technology which aims to enhance the production, processing, packaging and preservation of food also. Environment microbiology aims to restore the balance between nature, ecology and human interest. Bioremediation and biological intervention are only possible by the way of utilization of techniques of microbiology. All these issues are now being addressed by using biotech processes. Microbeslike bacteria, fungi algae and plants are being used in the process of bioremediation.

Beside job opportunities in the sector of agriculture, pharmaceutical and food industries our students are as research fellow at various National Institutes. Many students are working as Assistant Professor in colleges, Laboratory Technicians at Govt and private pathological laboratories.

Hence, Board of Studies in Biochemistry (Including Microbiology and Food Sciences) in its meeting held on 29/5/2024 resolved to accept the syllabus for M.Sc – I Sem- I and II (Microbiology) based on NEP as per the UGC guidelines. The prescribed syllabus for each paper is appended with a list of suggested readings.

Part A

Syllabus Prescribed for <u>First</u> Year PG Programme: M.Sc. PART-I (MICROBIOLOGY) M.Sc. PART I (MICROBIOLOGY) EXAMINATION (Semester–I) Examination scheme underNEP-2023 for the subject MICROBIOLOGY

				Teaching& Learning Scheme				Examination &Evaluation Scheme										
			Т	Teaching	Period Pe	er week		Credits	Γ				Max	ximum 1	Marks	Minimu	m Passing	g Marks
		Subject								Duration of Exam Hours		Theory	Prac	tical				
Sr. No	Subjects, Paper number, Title of the Paper	Code	L	Т	P	Total	L/T	P	Total	Exam Hours	Theory Internal	TIVICO	In	Ex	Total Marks	Mks In	Mks Ex	Grade
0	*Pre- requisite courses(s) if applicable/MOOC/Internship/Fie ld work cumulatively If students wish to opt minor course of UG as Major for PG, balance 12 credits course will have to be completed (As and when apploicable)	Th-Prq	0	0	0	0	earned =	nal credits =(1) minu Credits major I courses (minus) The cre already from th courses minor a now to opted a at PG	s(2). from DSC in UG dits earned e as at UG, be		15	35			50	06	14	P
1	PAPER-RM [RM] RESEARCH METHODOLOGY AND IPR IN MICROBIOLOGY	RM	4			4	4		4	3	40	60			100	16	24	P
2	PAPER-I [DSC I ,1MCB 1] MICROBIAL AND ANALYTICAL TECHNIQUES	1MCB1	3			3	3		3	3	40	60			100	16	24	P

3	PAPER-II [DSC II ,1MCB 2] MICROBIAL ENZYMOLOGY & ENZYME TECHNOLOGY	1MCB2	3			3	3		3	3	40	60			100	16	24	P
4	PAPER III [DSC III ,1MCB3] ENVIRONMENTAL MICROBIOLOGY	1MCB3	3			3	3		3	3	40	60			100	16	24	Р
5	PAPER-IV [1MCB 4] DSE1: GENERAL AND CLINICAL BIOCHEMISTRY/ DSE2: MICROBIAL METABOLISM /MOOC	1MCB4	3			3	3		3	3	40	60			100	16	24	P
6	PRACTICAL-I PAPER I AND PAPER II based [LAB-1] ANALYTICAL TECHNIQUES AND ENZYMOLOGY	LAB-I			6	6		3	3	6+6			50	50	100	5	50	P
7	PRACTICAL-II PAPER III AND PAPER IV based [LAB-2] ENVIRONMENTAL MICROBIOLOGY, METABOLISM AND CLINICAL BIOCHEMISTRY	LAB-II			6	6		3	3	6+6			50	50	100	5	50	Р
8	#On Job Training, Internship/Apprenticeship, Field projects Related to Major@ during vacations cumulatively			urs tively du ns of S I					4*									P*

	Co-curricular Courses: Health									
	and wellness, Yoga Education,									
	Sports and Fitness, Cultural	90 Hour	s							
9	Activities, NSS/NCC, Fine,	Cumula	tively fr	rom						
	Applied/Visual/Performing	Sem I to	Sem IV	V						
	Arts During									
	Semester I, II,III and IV.									
10	TD 4.1					22			700	
10	Total					22			700	

L: Lecture, T: Tutorial, P:Practical/Practicum

Total Marks 700, Total minimum and maximum credits 22

Pre- requisite course mandatory if applicable: Prq, Theory: Th, Practical/Practicum: Pr, Faculty specific core: FSC, Discipline specific core: DSC, Discipline specific elective: DSE, Laboratory: Lab, OJT: On Job Training: Internship/ Apprenticeship., Field projects: FP., RM: Research Methodology., Research project: RP, Co-curricular Courses: CC

Note: # On job Training, Internship/ Apprenticeship., Field projects Related to Major (During vacatins of Semster I and semester II) for duration of 120 hours mandatory to all the students, to be completed during vacations of Semester I and /or II.

This will carry 4 credits for learning of 120 hours. Its credits and grades will be reflected in semester II credit grade report.

Note: Co-curricular courses: In addition to the above, CC also include but not limited to academic activities like paper presentations in conferences, Aavishkar, start- ups, Hackathon, Quiz competitions, Article published, Participation in summer/ winter school/ short term courses, Scientific surveys, Societal surveys, field visits, studt tours, industrial visits, online/offline courses on yoga (yoga for IQ development, yoga for anger management, yoga for eye sight improvement, yoga for physical stamina, yoga for stress management, etc.) These can be completed cumulatively during semester I,II,III and IV. Its credits and grades will be reflected in Semester IV credit grade report.

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
RM	RESEARCH	4 periods per week
	METHODOLOGY	
	AND IPR IN	
	MICROBIOLOGY	

PAPER-RM [RM]

RESEARCH METHODOLOGY AND IPR IN MICROBIOLOGY Number of periods per week: 4. Number of Credits: 4.

After completion of this course, students will be able to:

CO1: To understand the role of research methodology in Science and Microbiology.

CO2: To understand literature review process and formulation of a research problem.

CO3: To understand data collection methods and basic instrumentation.

CO4: To learn various statistical tools for data analysis.

CO5: To learn technical writing and communication skills required for research.

CO6: To create awareness about intellectual property rights and patents.

	Introd	luction of Research	
	>	Research and Research Methodology: Definitions, general specific	
		characteristics of research	10 periods
UNIT-	>	Types of research- Descriptive & analytical, Applied & fundamental,	perious
_		Qualitative& quantitative, conceptual, and empirical	
	>	Definitions of discovery, invention & innovation	
	>	Steps involved in the research process.	
	Litera	ture review and Research problem	
	>	Literature review or survey, Characteristics of Literature review	
UNIT-	>	Sources of literature survey	10
II	>	Steps in the Literature review process	periods
	>	Research problem and its sources, formulation of a research problem,	
		techniques involved in defining a problem	
	Resea	rch Design and databases	
	>	Research design and its major types	10
UNIT-	>	Features of good research design	periods
III	>	Hypothesis& features of a good hypothesis	
	>	Definition & types of research methods	
	>	Research database	

	Bio-st	atistics & its application in research	
	>	Definition of statistics & bio-statistics, Common terminologies of bio-	
		statistics-population	
	>	Types of population individual, attribute, variate, frequency &frequency	10
		distribution,	periods
UNIT-	>	Class interval methods of grouping or class interval, class width&	
IV		boundary Central tendency & measure of central tendency-mode.	
	>	The median, arithmetic mean of grouped & ungrouped data geometric	
		mean, and harmonic mean.	
	>	Test of confidence chi-square test, Student's t-test.	
	>	Presentation of statistical data-Tables (simple tables, distribution tables)	
		Charts & diagrams (bar charts, pie charts, histograms, dendrograms)	
	Resea	rch report, thesis writing, plagiarism and tools	
	>	Research report	
	>	General format of the research report	
UNIT- V	>	Types of reports	10
	>	Structure of thesis	periods
	>	Structure of research paper or manuscript,	
	>	Plagiarism, paper retraction.	
	>	Funding agencies	
	>	Software tools in the design and preparation of the thesis	
	Intel	lectual property rights and patent law	
	>	Indian Patent law	10
UNIT-	>	Techniques of writing a Patent,	periods
VI	>	Filing procedure,	
	>	Copy right	
	>	Technology transfer	
	>	Royalty,	
	>	Trade related aspects of intellectual property rights.	

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
1MCB1	MICROBIAL AND ANALYTICAL TECHNIQUES	3 periods per week

PAPER-I [DSC I , 1MCB1] MICROBIAL AND ANALYTICAL TECHNIQUES Number of periods per week: 3

Number of Credits: 3

After completion of this course students will be able to:

CO1: Know the advance techniques of microscopy such as electron microscopy, Fluorescence, Scanning Electron Microscopy and Transmission Electron Microscopy.

CO2: Design chromatographic experiments, categorize chromatography, analyze suitability of chromatographic methods

CO3: Apply electrophoretic methods for separation of biomolecules, interpret gelelectrophoresis results

CO4: Perform spectrophotometric analysis of organic compounds, demonstrate the laws of radiation.

CO5: Perform Centrifugation of Density gradient Centrifugation, Ultra Centrifugation, Differential Centrifugation

CO6: Understand the phenomenon of radioactive disintegration, calculate the radioactive disintegration.

Unit-I	 Advanced Microscopic Techniques Fluorescence Microscopy, Scanning Electron Microscopy, Transmission Electron Microscope. Phase Contrast, Microscopy. Application of Microscope in analyzing biological samples. 	07 periods
Unit- II	 Chromatographic Techniques ▶ Paper, ▶ Thin layer, ▶ Gas, ▶ Ion exchange, ▶ High Performance Liquid Chromatography 	07 periods
Unit- III	 Electrophoretic Techniques ➤ Moving boundary, ➤ Zone (paper, gel etc.) electrophoresis. ➤ Immuno electrophoresis, ➤ Isoelectric focusing. 	08 periods

Unit- IV	Spectroscopic Techniques ➤ UV-Visible Spectroscopy, ➤ Infra-Red Spectroscopy, ➤ Fluorometry, ➤ Flame Photometry, ➤ Nuclear Magnetic Resonance Spectroscopy	08 periods
Unit-V	 Centrifugation Techniques Centrifugation, Density gradient Centrifugation, Ultra Centrifugation, Differential Centrifugation 	08 periods
Unit-VI	 Isotopic Tracers techniques in Biology ➢ Phenomenon of radioactivity, ➢ Radioactive isotopes & its applications in Biology, ➢ detection and measurement of isotopes. ➢ Dilution technique 	07 periods

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
1MCB2	MICROBIAL ENZYMOLOGY & ENZYME TECHNOLOGY	3 periods per week

PAPER-II [DSC II , 1MCB2] MICROBIAL ENZYMOLOGY & ENZYME TECHNOLOGY Number of periods per week: 3. Number of Credits: 3

After completion of this course students will be able to:

CO1: Calculate the enzyme units, understand the terminologies in relation to enzymology,insights to protein folding.

CO2: Design experiments for purification of enzymes, test the homogeneity of the enzyme, classify the enzymes

CO3: Determine the effect of pH and temperature on activity of enzymes, Derive Michaelis-Menton equation, apply enzyme kinetics for different enzymes

CO4: Explain action of enzymes, perform enzyme inhibition studies, determine the effect of activators and coactivators

CO5: Understand theories of enzyme actions, demonstrate chemical modification of activesites, conceptualize enzyme substrate specificity CO6: Understand the concept of immobilization and Enzyme technology.

	Fundamentals of Enzymology, enzyme classification and isolation and purification of enzymes	07 periods
Unit-I	Introduction to Enzymology: Various terminologies, Properties of enzymes	
	Enzyme as catalyst and enzyme activity Unit,	
	 Classification of enzymes –IUB 	
	> Techniques for isolation and purification of enzymes	
	Criteria for purity of enzymes	
	Mechanism of enzyme action	07
	 Various theories of mechanism of enzyme action, 	periods
T T •	Concept of enzyme and substrate specificity,	
Unit-	Chemistry of active Centre,	
II	> Factors affecting catalytic efficiency of enzymes	
	Mechanism of action of lysozyme	
	Coenzymes, prosthetic groups and cofactors in enzyme catalysis	
	Enzyme kinetics	08
	➤ Importance of Kinetic Study, Concepts of ES complex,	periods
	Effect of different parameters on enzyme activity	
Unit-	Derivation of Henry - Michaelis - Menten equation of rectangular	
III	hyperbola, Significance of Vmax and Km,	
	> Transformation of H.M.M. equation to a straight-line equation,	
	Construction of Lineweaver - Burk Plot,	
	Bisubstrate enzyme kinetics	
	Enzyme Inhibition and Regulation	08
	> Types of enzyme inhibition and its graphical representation	periods
TT •4	Regulation of enzyme activity: induction and repression,	
Unit- IV	feedback inhibition, covalent modification and allosterism	
IV	Multienzyme complex and its significance	
	➤ Isoenzymes and its metabolic significance	
	Enzyme compartmentation and shuttle systems	
	Enzyme Technology	08
	Enzyme immobilization: methods of enzyme immobilization	periods
Unit-	Enzyme biosensors: general concept, types and applications	
V	Enzyme engineering: Objectives and rational of enzyme	
	engineering.	
	Covalent modification and Site directed mutagenesis.	
	Methods of enzyme assay	
	Applications of Enzymes	
	 Applications of microbial enzymes in: leather industries, 	07
Unit-	textile and detergent industries, wood industries, etc	periods
VI	Application of enzymes in clinical diagnosis and therapeutics	
	> Application of enzymes in environmental analysis	
	> Applications of enzyme sensors	
	Application of immobilized enzymes	

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
1MCB3	ENVIRONMENTAL	3 periods per week
	MICROBIOLOGY	

PAPER-III [DSC III , 1MCB 3] ENVIRONMENTAL MICROBIOLOGY

Number of periods per week: 3. Number of Credits: 3.

Course learning outcomes (COs)

After completion of this course, students will be able to

CO 1: To understand the role of Environmental pollution, Environment and biota.

CO 2: Categorize the recalcictrant organic compounds and conceptualize its biomagnification

CO3: Eutrophication of water bodies and manage its control

CO4: To understand importance of Nitrogen in bacterial system

CO5: Illustrate the significance of Carbon cycle, simplify the degradation of organic compounds and C recycling, understand the role of bacteria in S recycling

CO6: Explain conceptualize microbiology and biochemistry of metal and metalloidtransformation.

CO7: Design extraction of metals using bacteria, explain biodeterioration of sculptures.

	Environmental pollution and Eutrophication:	
Unit-I	 Definition of environment, 	
UIIIt-I	➤ Interaction between environment and biota,	07narioda
	> environmental pollution:	07periods
	➤ Meaning, scope, concept of environmental	
	> pollution	
	> Eutrophication,	
	➤ Microbial changes induced by organic and inorganic pollutants,	
	> role of phosphorus and nitrogen in eutrophication process and	
	control of eutrophication	
	Nitrogen cycle:	
Unit-	Symbiotic and non-symbiotic 'N' fixation,	07 periods
II	➤ Mechanism of nitrogenase, cross inoculation group and host	07 periods
	specificity, energy input/output ratio of 'N' fixation process in	
	crop production,	
	➤ Biochemistry of Nitrate reduction.	

 ➢ General aspects, generation and decay of detritus 'C' compounds, features of plant cell wall polysaccharides, cellulose & lignin degrading microorganisms, ➢ mechanism of enzymes and its products. ➢ Carbonic anhydrase and its role in carbon cycle. Unit-IV Sulphur cycle and Acid Mine Drainage: 	ds
features of plant cell wall polysaccharides, cellulose & lignin degrading microorganisms, > mechanism of enzymes and its products. > Carbonic anhydrase and its role in carbon cycle.	
 mechanism of enzymes and its products. Carbonic anhydrase and its role in carbon cycle. 	
Carbonic anhydrase and its role in carbon cycle.	
Unit-IV Sulphur cycle and Acid Mine Drainage:	
Suprar cycle and refu rime Dramage.	
Sulphur cycle:	
➤ Significance of 'S' Compound, Microbial sulphur metabolism 08 period	ds
 sulphur oxidizing bacteria and mechanism, distribution of sulphur 	
bacteria in nature	
➤ Biochemistry of sulphate reduction.	
Acid mine drainage:	
➤ Iron oxidizing bacteria,	
 Microbiology and Biochemistry of Metal and Metalloid 	
Transformation- Transformation of Mercury, Arsenic Lead and	
Tellurium.	
Unit-V Recalcitrant Organic Compounds and Biomagnification:	
➤ Definition of recalcitrant organic compounds and their 08 period	ls
presence innatural ecosystem,	
 Concept and consequences of biomagnification, 	
➤ Biomagnification of chlorinated hydrocarbons and	
pesticides.	
➤ Biodegradation of recalcitrant and toxic chemicals	
Unit-VI Biodeterioration:	
Concept of biodeterioration.	ds
➤ Biodeterioration of Wood, Metal, pharmaceutical	
products and Stone Work.	
➤ Bioleaching: Introduction, application of bacterial	
leaching, leaching techniques, prospective of bioleaching	

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
1MCB4	GENERAL AND CLINICAL	3 periods per week
	BIOCHEMISTRY	

PAPER-IV [DSE 1, 1MCB 4] GENERAL AND CLINICAL BICHEMISTRY

Number of periods per week: 3 Number of Credits: 3

Course learning outcomes (COs)

After completion of this course students will be able to:

CO1: Understand the physical and chemical properties of water

CO2: Understand the various orders of protein structure, classification, properties, and biological

importance of proteins.

CO3: Compare and contrast the structure and functions of the oligo and polysaccharides.

CO4: Evaluate the structure and hierarchical organization of nucleic acids with their biological

functions.

CO5: Acquire knowledge on the properties and functions of cholesterol and other steroids

Unit	Properties of Water:	07
I	➤ Importance of water in biological systems with special reference to the maintenance of native structure of biological molecules.	periods
	➤ Biological relevance of pH and pKa. Buffers, buffer action, and buffer capacity.	
	➤ Importance of buffers in biological system	
Unit	Carbohydrates:	07
II	 Structure, function and properties of carbohydrates, 	periods
	➤ Polysaccharides- Homopolysaccharides and heteropolysaccharides; starch, cellulose, glycogen, hyaluronic acid, chondroitin sulphate, chitin, xylans, bacterial cell-wall polysaccharides, blood group polysaccharides.	
	➤ Importance of glycoproteins and glycolipids, amino sugars, muramic acid, neuraminic acid, Glycoproteins- Glycosidic bond, N- and O-glycosylation, carbohydrates in tissue engineering.	
	➤ Proteoglycans- syndecan and decorin. Pectin and pectic polysaccharides. Lectins — characteristics and functions in biological system	
Unit	Proteins:	08
III	Amino acids and their classification, Structure of peptide bond,	periods
	Protein classification, structural levels of proteins including primary, secondary (α helix, β pleated sheets) tertiary and quaternary structure), Ramachandran Plot,	

	1		1
	>	Modern approach to peptide synthesis, conformation of proteins, factors affecting protein structure, Forces involved in stabilization of protein structure,	
	>	Structure of fibrous proteins: K-keratin, silk fibroin and collagen, structural characteristics of myoglobin and chymotrypsin, hemoglobin, folding of proteins- Motifs (super secondary structure – triose phosphate isomerase, concanavalin-A and Rossmann fold),	
	\(\rightarrow\)	Denaturation and renaturation of proteins, protein sequencing, Isolation methods	
Unit	Lipids	3	08
IV	>	Lipids- properties, structure, classification and functions,	periods
	>	Introduction, structure and nomenclature of fatty acids, structure of cholesterol (derivation excluding synthesis),	
	>	Chemistry of bile acids, bile salts, structural derivation of certain steroidal compounds such as testosterone, progesterone, estrogen and vitamin D, terpenoids, micelles, vesicles, liposome, mixed micelles, trans fatty acids,	
	>	Eicosanoids- classification, structure and functions of prostaglandins thromboxanes, leukotrienes, lipoproteins- structure,	
	>	function and mechanism of transport.	
Unit	Nuclei	ic Acids	08
V	>	Chemical names, structures of Nucleosides and Nucleotides,	
			periods
	>	formation of dinucleotide, and oligonucleotide, histone proteins, nucleosome, solenoid fiber, scaffold, Melting of DNA,	periods
	>	formation of dinucleotide, and oligonucleotide, histone proteins,	periods
		formation of dinucleotide, and oligonucleotide, histone proteins, nucleosome, solenoid fiber, scaffold, Melting of DNA,	periods
	A	formation of dinucleotide, and oligonucleotide, histone proteins, nucleosome, solenoid fiber, scaffold, Melting of DNA, Tm, factors affecting Tm, Cot curve,	periods
	A	formation of dinucleotide, and oligonucleotide, histone proteins, nucleosome, solenoid fiber, scaffold, Melting of DNA, Tm, factors affecting Tm, Cot curve, classification of DNA based on cot curve. Chargaff's rule, Watson and Crick model of DNA, A, Z models of DNA structure of RNA.	periods
Unit	A A A A	formation of dinucleotide, and oligonucleotide, histone proteins, nucleosome, solenoid fiber, scaffold, Melting of DNA, Tm, factors affecting Tm, Cot curve, classification of DNA based on cot curve. Chargaff's rule, Watson and Crick model of DNA, A, Z models of DNA structure of RNA.	periods 07
Unit VI	> > Clinic	formation of dinucleotide, and oligonucleotide, histone proteins, nucleosome, solenoid fiber, scaffold, Melting of DNA, Tm, factors affecting Tm, Cot curve, classification of DNA based on cot curve. Chargaff's rule, Watson and Crick model of DNA, A, Z models of DNA structure of RNA. Nucleic acid-isolation, separation assay methods and sequencing	
	> Clinic	formation of dinucleotide, and oligonucleotide, histone proteins, nucleosome, solenoid fiber, scaffold, Melting of DNA, Tm, factors affecting Tm, Cot curve, classification of DNA based on cot curve. Chargaff's rule, Watson and Crick model of DNA, A, Z models of DNA structure of RNA. Nucleic acid-isolation, separation assay methods and sequencing cal Biochemistry Principal and methods of diagnostic test for common metabolic	07
	> Clinic	formation of dinucleotide, and oligonucleotide, histone proteins, nucleosome, solenoid fiber, scaffold, Melting of DNA, Tm, factors affecting Tm, Cot curve, classification of DNA based on cot curve. Chargaff's rule, Watson and Crick model of DNA, A, Z models of DNA structure of RNA. Nucleic acid-isolation, separation assay methods and sequencing cal Biochemistry Principal and methods of diagnostic test for common metabolic disorders of clinical importance;	07
	Clinic	formation of dinucleotide, and oligonucleotide, histone proteins, nucleosome, solenoid fiber, scaffold, Melting of DNA, Tm, factors affecting Tm, Cot curve, classification of DNA based on cot curve. Chargaff's rule, Watson and Crick model of DNA, A, Z models of DNA structure of RNA. Nucleic acid-isolation, separation assay methods and sequencing cal Biochemistry Principal and methods of diagnostic test for common metabolic disorders of clinical importance; Liver disorders and their tests: SGPT, SGOT, Bilirubin Kidney disorders and their diagnostic test: Urine albumin, Blood	07

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
1MCB4	MICROBIAL METABOLISM	3 periods per week

PAPER-IV [DSE II , 1MCB 4] MICROBIAL METABOLISM Number of periods per week: 3 Number of Credits: 3

Course learning outcomes (COs)

After completion of this course, student will be able to:

CO1: categorize the in-depth carbohydrate metabolism.

CO2: distinguish the aerobic metabolism of C1 Compounds.

CO3: distinguish the nucleotide metabolism.

CO4: comprehend microbial metabolism of aromatic compounds.

CO5: apply protein metabolism into their studies and research.

	Carbohydrate Metabolism:	
	➤ EMP	
Unit-	≽ ED	07
I	> HMP in different microorganism.	periods
	> Fate of pyruvate.	
	Gluconeogenesis.	
	TCA & Aerobic Metabolism of C1 Compounds:	
	 Tricarboxylic acid cycle 	
Unit-	Ribulose pathways	07
II	Serine pathway	periods
	Xylulose monophosphate pathway.	
	Biosynthesis of Nucleotides:	
Unit-	Biosynthesis of purine and pyrimidine nucleotides	08
III	Biosynthesis of deoxyribonucleotides.	periods
	Regulation of nucleotides synthesis.	
Unit-	- Catabolism of Nucleotides:	
IV	Formation of coenzyme nucleotides	periods
	➤ Inhibitors of nucleotide synthesis	
	Lipid Metabolism:	
Unit- V	➤ Biosynthesis of fatty acids,	08
•	> triacylglycerol, phosphoglycerides, sphingomyeline and	periods
		18

	sphingolipids.	
	Oxidation of saturated and unsaturated fatty acids.	
	Protein Metabolism:	
Unit-	 Biosynthesis of non-essential amino acids: tyrosine, glutamate, 	07
VI	glutamine, proline, arginine, alanine, aspartate, aspargine, serine,	periods
	glycine and cysteine.	

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
LAB-1	ANALYTICAL	6 periods per week
	TECHNIQUES AND	
	ENZYMOLOGY	

PRACTICAL-I PAPER I AND PAPER II BASED [LAB-1] ANALYTICAL TECHNIQUES AND ENZYMOLOGY

Number of periods per week: 6. Number of Credits: 3.

Course learning outcomes (COs)

After completion of this course, students will be able to:

CO1: Determine proteins content in given samples

CO2: Design chromatographic procedures for amino acids, sugars and nucleotides

CO3: Estimate DNA and RNA concentration in given sample

CO4: Develop the skill of electrophoresis for protein separation.

CO5: Determine the effect of physical parameters on enzyme activity.

CO6: Perform Immobilization of enzymes

1.	Estimation of proteins by Biuret method.
2.	Estimation of protein by Folin-Ciocalteau method.
3.	Estimation of DNA by UV Spectrophotometry
4.	Estimation of RNA by UV Spectrophotometry
5.	Paper chromatography/TLC of amino acids.
6.	Paper chromatography/TLC of sugars.
7.	Separation of protein by gel electrophoresis.
8.	Assay of enzymes amylase/Invertase/ lipase/protease
9.	Effect of different parameters on activity of amylase: a) temperature b) PH c) Time
10.	Effect of different factors on activity of amylase a) Enzyme concentration b) inhibitors
11.	Immobilization of enzymes.

19

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
LAB-2	ENVIRONMENTAL MICROBIOLOGY, METABOLISM AND CLINICAL BIOCHEMISTRY	6 periods per week

PRACTICAL-II PAPER III AND PAPER IV BASED [LAB-2] ENVIRONMENTAL MICROBIOLOGY, METABOLISM AND CLINICAL BIOCHEMISTRY

Number of periods per week: 6. Number of Credits: 3.

Course learning outcomes (COs)

After completion of this course students will be able to:

CO1: Isolate soil bacteria and analyze antagonism

CO2: Cultivate phosphor bacteria from soil sample

CO3: Determine the nitrogen content in given sample

CO4: Illustrate iron and sulphur bacteria

CO5: Understand the concept of soil profile

CO6: Understand the effect of Biofertilisers verses Chemical Fertilisers

CO7: Diagnose the Liver, Kidney functioning and Lipid profile

Perform those Practicals relevant to DSE opted

	Soil Testing Analysis
1.	Determination of soil Temperature, PH, Acidity, NPK, Soil Texture by Sieve
	Method
2.	Isolation of soil microorganisms
3.	Study of antagonism in microorganisms from soil.
4	Isolation, Identification, Enumeration of Nitrogen fixing microorganism from
4.	rhizosphere and/ or phylosphere
5.	Isolation and cultivation of Rhizobium from soil and roots nodules.
6.	Enrichment, Isolation and Microscopic examination of Phosphate solubilizing
0.	bacteria, Nitrosomonas, Nitrobacter species from soil
7.	Isolation and microscopic examination of iron oxidizing bacteria, sulphur
/.	bacteria
8.	Enrichment and isolation of aliphatic hydrocarbon degraders, phenol degraders,
0.	parathion degraders
0	To examine the effects of Biofertilisers verses Chemical Fertilisers on root
9.	ramification and plant growth
10.	Liver Function Tests
L	

	Vander Berg Test and Bilirubin Thymol Turbidity Test
	SGOT, SGPT, LDH and Alkaline and Acid Phosphatase
	Kidney Function Tests
11.	Blood Urea, Urea Clearence, Phenol Red Clearence, P-amino hippuric acid
	clearence
12.	Lipid Profile: Cholesterol Test, LDL, HDL
13.	Blood Glucose Test

Part B

Syllabus Prescribed for <u>First</u> Year PG Programme: M.Sc. PART I (MICROBIOLOGY)

M.Sc. PART I(MICROBIOLOGY)EXAMINATION (Semester–II) Examination scheme under NEP-2023 for the subject MICROBIOLOGY

				Te	eaching&	Learnin	g Scheme	.						Exan	nination	& Eva	luation	Scheme	
Sr.	Subjects, Paper number, Title of the Paper	Subject	Т	eaching I	Period Pe	er week		Credits		Duratio		· ·	I	Maxii Mai	-	Mini	mum F Mark	Passing s	
	T apor	Code	L	Т	P	Total	L/T	P	Total	n of Exam Hours	Theory	Theory Theory +MCQ	In	Ex	Total	Mks	Mks	Grade	
				L	1	1	Total		P			Internal	External	111	EX	Marks	In	Ex	91466
1	PAPER-V [DSC I ,2MCB1] MICROBIAL DIVERSITY AND MOLECULAR TAXONOMY	2MCB1	3			3	3		3	3	40	60			100	16	24	P	
2	PAPER-VI- [DSC II , 2MCB2] PHARMACEUTICAL MICROBIOLOGY	2MCB2	3			3	3		3	3	40	60			100	16	24	Р	
3	PAPER-VII [DSC III , 2MCB3] APPLIED MICROBIOLOGY FOR AGRICULTURE AND ENVIRONMENT	2MCB3	3			3	3		3	3	40	60			100	20	-	P	
3	PAPER-VIII [DSE 1, 2MCB4] MICROBIAL PHYSIOLOGY AND PHOTOSYNTHESIS [DSE 11, 2MCB4]	2MCB4	3			3	3		3	3	40	60			100	16	24	P	

	PLANT PATHOLOGY /MOOC													
5	PRACTICAL-III PAPER V AND PAPER VI BASED [LAB-3] MICROBIAL DIVERSITY AND PHARMACEUTICAL MICROBIOLOGY	LAB-III		6	6	3	3	6+6		50	50	100	50	Р
	PRACTICAL-IV PAPER VII AND PAPER VIII BASED [LAB-4] MICROBIAL PHYSIOLOGY, PLANT PATHOLOGY AND APPLIED MICROBIOLOGY	LAB-IV		6	6	3	3	6+6		50	50	100	50	Р
7	#On Job Training, Internship/Apprenticeship, Field projects Related to Major @during vacations cumulatively		ours atively du				4*							P*
8	Co-curricular Courses: Health and wellness, Yoga Education, Sports and Fitness, Cultural Activities, NSS/NCC, Fine, Applied/Visual/Performing Arts During Sem I, II, III and IV.		nrs atively fr o Sem IV											
9	Total						22					600		

Total Marks 600, Total maximum credits 22

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
2MCB1	MICROBIAL DIVERSITY	3 periods per week
	AND MOLECULAR	
	TAXONOMY	

PAPER-V [DSC I, 2MCB1] MICROBIAL DIVERSITY AND MOLECULAR TAXONOMY Number of periods per week: 3. Number of Credits: 3.

Course learning outcomes (COs)

After completion of this course, students will be able to:

CO1: comprehend knowledge of systematics of bacteria

CO2: distinguish different approaches of bacterial systematics CO3: discuss the classification in Fungi

CO3: Apply knowledge of biology of extreme environment

CO4: categorize the mechanisms of bacterial adaptation modes at harsh environmental conditions

Unit-	Micro	obial Diversity and Methods of Classification	07
I		Microbial Diversity-	periods
	>	Basic concepts of taxonomy, phylogenetic relationship (three	
		domain system)	
	>	The expanse of microbial diversity	
		Diversity of Microbial world –	
	>	different groups of microorganisms- methods of classification,	
	>	Numerical Taxonomy,	
	>	Methods for Genetic relatedness	
Unit-	Micro	obial World: Eu Bacteria	07
II	>	Bergey's manuals of systematic Bacteriology 2 nd Edition 2005	periods
	>	Nutritional Classification, -Classification of bacteria based on	
		nutrition: lithotrophs, organotrophs, phototrophs, chemotrophs.	
	>	Diversity based on physiological factors: solutes, pH, temperature,	
		oxygen, pressure, radiation.	
	>	Characteristics features of some bacterial groups. Actinomycetes.	
		Cyanobacteria, Mycoplasma, Spirochaetes, Rickettsia,	
		Photosynthetic bacteria, Bioluminescent bacteria	

Unit-	Extreme Environments and Extremophiles:	08
III	 Study of Extremophiles: Isolation, classification, adaptation 	periods
	mechanisms and biotechnological applications of extremophiles	
	(i. Thermophiles ii. Psychrophiles iii. Alkaliphiles iv. Acidophiles v.	
	Halophiles vi. Methanogens)	
	Study of extreme environments i. Deep Subterranean habitat ii.	
	Thermophilic environment	
Unit-	Introduction to Mycology	08
IV	➤ General charactristics of, distribution and classification of Fungi,	periods
	➤ Ultrastructure of fungal cells, Nutrition in fungi,	
	> Reproduction of Fungi- vegetative, Asexual and Sexual, Fungal	
	spore and fruiting bodies, Interaction between fungi and other	
	organisms.	
	Economic importance of fungi in agriculture, food , Industry,	
	Medicine, bioremediation,	
	Mycorrhizae-Different types	
	Mycotoxins, Plant, animal and human pathogenic fungi	
Unit-	Introduction to phycology	08 periods
V	➤ General characteristics of, distribution and classification of Algae,	periods
	Ultrastructure of Cyanophycean cells,	
	> Differences between micro and macro algae. Symbiotic algae:	
	Lichens,. Examples of Eukaryotic and prokaryotic algae.	
	Economic importance of algae in agriculture, food and feed,	
	Industry, Heavy metal removal ,water purification	
	Algal blooms and toxins	
Unit-	Exploration of Un-culturable bacteria	07
VI	 Concept of unculturable bacterial diversity 	periods
	➤ Methods of extracting total bacterial DNA from the environment	
	Concept of metagenomics	
	➤ Culture-independent molecular methods for identification of	
	unculturable	
		l

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
2MCB2	PHARMACEUTICAL	3 periods per week
	MICROBIOLOGY	

PAPER – VI [DSC II , 2MCB2] PHARMACEUTICAL MICROBIOLOGY Number of periods per week: 3.

Number of Credits: 3.

Course learning outcomes (COs)

After completion of this course, students will be able to:

CO1: comprehend the in-depth information about antibiotic action with the cell

CO2 : discuss the knowledge about production of pharmaceuticals

CO3: distinguish the different classes of antimicrobial agents

CO4: comprehend information about GLPs

CO5 : Understand different Drug Development Process

Unit I	Antimicrobial agents, its classification and mechanism of action	07 periods
	Introduction to antimicrobials and general characters	
	> Antibacterial antibiotics, classification and mechanism of	
	action.	
	> Antifungal antibiotics, classification and mechanism of	
	action.	
	➤ Antiviral agents, classification and mechanism of action	
	Chemical disinfectants and antiseptics and its mechanism of	
	action	
Unit II	Antimicrobial resistance and antibiotic sensitivity testing	08 periods
	Antimicrobial resistance and its mechanisms	
	> Diffusion methods of AST: Stokes method, Kirby Bauer	
	disc diffusion, Ezy MIC, Hi-Comb, Cup plate method	
	> Dilution methods of AST: Tube dilution method, agar	
	dilution, microbroth dilution	
	 Microbiological assays of penicillin, Streptomycin and 	
	vitamin B2 and B12.	
Unit III	Microbial Spoilage and preservation of pharmaceutical	08 periods
	Products:	
	> Types of spoilage, factors affecting the microbial spoilage of	
	pharmaceutical products,	
	> sources and types of microbial contaminants, assessment of	

	microbial contamination and spoilage,	
	 Preservation of pharmaceutical products using antimicrobial 	
	agents, evaluation of microbial stability of formulations	
Unit IV	Sterilization control of pharmaceutical Products:	08 periods
	> Sterility testing- (heat sterilization, D value, z value,	
	survival curve, Radiation, gaseous and filter sterilization).	
	➤ Chemical and biological indicator. Design and layout of	
	sterile product manufacturing unit.	
	Designing and safety of microbiology laboratory	
Unit V	Drug Discovery and Development	07 periods
	 Need for new antimicrobial Drug Development, 	
	➤ Outline of Drug Development process in Pharmaceutical	
	Industry	
	Clinical trials.	
	Vaccine development	
	Standardization of vaccines and sera.	
Unit VI	Quality assurance and Regulatory compliance for	07 periods
	pharmaceutical Products:	
	➤ Good Manufacturing Practices (GMP) and Good Laboratory	
	Practices (GLP) in pharmaceutical industry,	
	Regulatory aspects of quality control.	
	Quality assurance and quality management in	
	pharmaceuticals ISO, WHO and US certification,	
	Government regulatory practices and policies, FDA	
	perspective	

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
2MCB3	APPLIED MICROBIOLOGY FORAGRICULTURE AND ENVIRONMENT	3 periods per week

PAPER-VII [DSC III , 2MCB3]

APPLIED MICROBIOLOGY FOR AGRICULTURE AND ENVIRONMENT Number of periods per week: 3.

Number of Credits: 3.

Course learning outcomes (COs)

After completion of this course, students will be able to:

CO1:. To understand the role of bacterial Technology in sustainable development

CO2: To apply Recycle, Reuse and Recovery solutions for waste management

CO3: apply the microbial methods for water purification.

CO4: To describe beneficial activities of Biofertilizers and Biopesticides

CO5: To understand the preparation and analysis of compost.

CO6: To understand the Concept of Biogas Technology

	Concept of sustainable development of ecosystem:	
Unit-	> Definition and Need of Sustainable developments.	07
I	Role of bacterial technology in achieving sustainable development. Improvement andrestoration of barren/degraded land,	periods
	biodiversity and its conservation	
	Waste management:	
Unit-	 Waste water management- Activated sludge process, Removal of organicand inorganic pollutants and water quality assessment Solid waste management: Sources and types, Impact of solid waste 	07 periods
	disposal, Recycle, Reuse and Recovery solutions	
Unit- III	Bioinoculants for plant nutrition: Biofertilizers: ➤ Basic concept of PSM, N2 Fixer, S-solubilizers, K solubilizers,	08
	Mycorrhizae, Endophytes, PGPR.	periods
	Advantages and disadvantages of biofertilizers.	
Unit- IV	Bioinoculants for plant protection: Biopesticides: ➤ Bacterial, fungal, viral etc., Biocontrol mechanism, and application of Biopesticides.	08 periods
	> Advantages and disadvantages of Biopesticides.	

Unit-V	Composting Science:	08
	> Introduction: definition, Science of composting, classification, Ro	le periods
	of microbes in composting, importance of composting,	
	➤ Kinetics and Biochemistry of composting: C:N ratio, moisture	
	content,temperature and oxygen levels	
	Methods of composting for agriculture and industrial waste: NAD method, activated compost, accelerated composting and enrichment,	DEP
	> phospho compost, Enriched FYM, Assessment of compost quality	
Unit- VI	Biogas Technology:	07 periods
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	> Introduction, Properties of Biogas	perious
	 Microbiology of Biogas production 	
	Biogas plant and its components	
	Classification of Biogas plant : Batch, Continuous and Semi	
	Continuous (Floating Drum type, Fixed Dome type)	
	➤ Factors involved in Biogas production	
	Use of Biogas	

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
2MCB4	MICROBIAL	3 periods per week
	PHYSIOLOGY AND	
	PHOTOSYNTHESIS	

PAPER – VIII [DSE I , 2MCB4] MICROBIAL PHYSIOLOGY AND PHOTOSYNTHESIS

Number of periods per week: 3. Number of Credits: 3.

Course learning outcomes (COs)

After completion of this course, students will be able to:

CO1: Classify the cellular transportations, understand structure and organization of biological membranes, understand cell signaling.

CO2: Simplify free energy and standard free energy, categorize the high energy phosphate groups, understand the ATP cycle

CO3: Categorize the respiratory chain in mitochondria and bacteria, demonstrate the oxidation-reduction reactions

CO4: Relate oxidative phosphorylation to electron transport, analyze uncouplers and inhibitors, categorize conformational coupling and chemiosmotic coupling

CO5: Demonstrate the electron transport system, analyze the photosynthetic system in aerobic and anaerobic bacteria, elucidate the structural basis of photosynthetic pigments.

	Membrane Transport:		
	Structure and organization of biological membranes.		
Unit-I	> Types of cellular transport, Passive, facilitated, Active, Grouptranslocation,		
	membrane bound and binding protein transport systems.	periods	
	Carrier models. Liposomes. Ion transduction NaK+, ATPase.		
	Signal Transduction:		
	General concept and types of cell signaling,	07	
Unit-II	G-protein coupled receptors and their effectors.	periods	
	> RTK and MAP Kinases.		
	Energy Metabolism:		
	➤ ATP cycle, Free energy, standard free energy change,		
	> conventions in biochemical energetic,		
	Calculation of DG. Standard free energy of hydrolysis of phosphate,	08	
Unit-III	compounds, Reservoirsof high-energy phosphate groups, Energy rich	periods	
	bonds,		
	➤ Biological energy		
	> transducer.		
	Bacterial and Mitochondrial Respiration:		
Unit-	 Respiratory chain in mitochondria and bacteria, 	08	
IV	Oxidation-reduction enzymes.	periods	
	 Respiration linked proton translocation. 		
	Oxidative Phosphorylation:		
	Coupling of oxidative phosphorylation toelectron transport.		
	Uncouplers, inhibitors,	0.0	
Unit- V	Reactions of oxidative phosphorylation,	08 periods	
	Mechanisms of oxidative phosphorylation.	P	
	> Chemical coupling, Conformational coupling and chemiosmotic		
	coupling mechanism		
	Microbial Photosynthesis:		
Unit-VI	 Structure of photosynthetic pigments, 		
	➤ Primaryphotochemistry PS I & PS II and election transport. CO2 fixation	07	
	inbacterial photosynthesis,	periods	
	Anoxygenic and oxygenic photosynthesis,		
	Halobacterial photosynthesis.		
	·	30	

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
2MCB4	PLANT PATHOLOGY	3 periods per week

PAPER-VIII [DSE II , 2MCB4] PLANT PATHOLOGY Number of periods per week:3. Number of Credits :3.

Course learning outcomes (COs)

After completion of this course, students will be able to:

- CO1: Introduce the subject of Plant Pathology, its concepts and principles.
- CO2: Acquaint with the structure, virus- vector relationship, biology and management of plant viruses.
- CO3: Acquaint with bacterial and fungal plant pathogens
- CO4: Acquaint with different strategies for management of plant diseases
- CO5: Emphasize the importance and the need of IDM in the management of diseases of important crops.

Unit-I	Introd	luction of plant pathology	07
	>	Importance, definitions and concepts of plant diseases, history and growth of plant pathology	periods
	>	process of infection, variability in plant pathogens, biotic and a biotic causes of plant diseases.	
	>	Growth, reproduction, survival and dispersal of important plant pathogens.	
Unit- II	Viral	Plant Pathogens	07
	>	General and morphological characters and structure of plant pathogenic viruses.	periods
	>	Myco-viruses, arbo and baculo viruses, satellite viruses, satellite RNAs, phages, viroids and prions.	
	>	Virus epidemiology and ecology (spread of plant viruses in agricultural fields, host range and survival).	
	>	Economic significances of plant pathogenic viruses. Management of diseases caused by plant viruses	

Unit- III	Bacter	rial Plant Pathogens	08
	<u>></u>	Epidemiology and detection methods for bacterial diseases of plants.	periods
	<u>×</u>	Identification, biochemical and molecular, characterization of	
		phytopathogenic bacteria (Pseudomonas syringae, Ralstonia solanacearum,	
		Agrobacterium tumefaciens, Xanthomonas oryzae).	
	<u>></u>	Strategies for management of diseases caused by phytopathogenic bacteria.	
Unit- IV	Funga	l Plant Pathogens	08
	>	Epidemiology and detection methods for fungal diseases of plants	Periods
	>	Identification and molecular, characterization of phytopathogenic fungi	
		(<u>Rhizoctonia solani, Pythium</u> spp., <u>Fusarium oxysporum</u> .).	
	>	Strategies for management of diseases caused by phytopathogenic fungi.	
Unit- V	Analy	tical Techniques	08
	>	Methods for: Isolation of pathogens and their identification,	periods
	>	Preservation of microorganisms in pure culture,	
	>	Measurement of plant disease,	
	>	Detection and Diagnosis of pathogens in seeds and other planting materials.	
	>	Advanced diagnostic techniques for plant pathogen: Nucleic acid probes,	
		Southern, Northern and Western hybridization, ELISA, ISEM and PCR.	
	>	Methods for evaluation of antibacterial and antifungal agents; in vivo and	
		vitro.	
Unit- VI	Diseas	e management	07
	>	Introduction, definition, concept and tools of disease management,	periods
	>	components of integrated disease management- their limitations and	
		implications. Principles of plant disease management by cultural, physical,	
		biological, chemical, organic amendments and botanicals methods of plant	
		disease control,	
	>	integrated control measures of plant diseases.	
	>	Disease resistance and molecular approach for disease management.	
	>	Application of chemicals on foliage, seed and soil, role of stickers, spreaders	
		and other adjuvants, health vis-a-vis environmental hazards, residual effects	
		and safety measures.	

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
LAB-3	MICROBIAL DIVERSITY AND PHARMACEUTICAL MICROBIOLOGY	6 periods per week

PRACTICAL-III PAPER V AND PAPER VI BASED [LAB-3] MICROBIAL DIVERSITY AND PHARMACEUTICAL MICROBIOLOGY Number of periods per week: 6. Number of Credits: 3.

Course learning outcomes (COs)

After completion of this course, students will be able to:

CO1: Develop techniques for isolation of extremophiles.

CO2: Perform Sterility testing of pharmaceutical products.

CO3: Demonstrate Microbiological assay of antibiotics.

CO4: Perform Assay of Vitamin.

CO5: Perform isolation of Actinobacteria & study of its morphologyCO5: perform

Antibacterial activity testing of new compounds

1	To demonstrate bactericidal effect of UV light
2	To estimate the number of Colony Forming Units of a given bacterial sample
3	Determination of Phenol Coefficient
4	To prepare serial dilutions of antibiotics
5	Microbiological assay of antibiotics by cup plate method
6	Microbiological assay of antibiotics by disc diffusion method
7	Determination of MIC and MBC of antibiotic
8	To perform antibacterial activity testing of new compounds
9	Sterility testing of pharmaceutical products
10	To perform assay of vitamin

Code of the Course/Subject	Title of the Course/Subject	(Total Number of Periods)
LAB-4	MICROBIAL PHYSIOLOGY,	6 periods per
	PLANT PATHOLOGY AND	week
	APPLIED MICROBIOLOGY	

PRACTICAL-IV PAPER VII AND PAPER VIII BASED [LAB-4] MICROBIAL PHYSIOLOGY, PLANT PATHOLOGY AND APPLIED MICROBIOLOGY

Number of periods per week: 6. Number of Credits: 3

Course learning outcomes (COs)

After completion of this course, students will be able to:

CO1: Demonstrate the Process of Osmosis

CO2: Demonstrate the mechanism of Active Transport

CO3: Isolate and identify pathogens from Plant Disease Sample

CO4: Demonstrate media for phosphobacteria

CO5: Isolate pathogens from polluted water.

CO6: differentiate between fecal and non-fecal coliforms from polluted water.

CO7: examine and estimate physic-chemical parameters of water.

Perform those Practicals relevant to DSE opted

Micro	bial Physiology	
1	To investigate the factors affecting the respiration of Yeast – Anaerobic Respiration,	
1	Temperature, Different Sugars	
2	To calculate rate of respiration in Yeast	
3	To demonstrate Active Transport in Yeast	
4	To study Membrane Transport and Signal transduction using simulation	
Plant 1	Pathology	
5	Collection and Preservation of Plant Disease Sample	
6	Isolation of bacterial pathogens from diseased plant	
	Isolation of fungal pathogens from diseased plant	
7	Study of fungal plant pathogens using Lactophenol Cotton Blue and slide culture	
,	technique	
8	Study of fungal plant pathogens using permenant slides	
Applie	Applied Microbiology	
9	Isolation of Salmonella from polluted water.	
10	Isolation of phage from sewage water.	
11	Enumeration of coliform and fecal Streptococci by MFT and/ or MPN technique	

	Examination and estimation of water for:
	a) Ammoniacal nitrogen b) nitrate c)nitrite d) dissolved oxygen e) chlorides
12	f) sulphates g) Chemical oxygen demand h) biochemical oxygen demand
	i) phosphates j) calcium k) magnesium l) hardness m) Alkalinity
	n) solids-total dissolved & suspended
13	Nodulation of legume roots - Leonard jar experiment.
14	Isolation of cyanobacteria
15	Preparation of compost by any one method
16	Isolation of Indole acetic acid producing organism

Sant Gadge Baba Amravati University, Amravati Format and Template for Courses (Theory) of UG/PG Programmes

M. Sc. I Sem I and Sem II Microbiology Theory Examination Scheme 40: 60 pattern

Marks distribution for Theory Internal: 40 marks

Activities	Marks
Unit test I and II (Best of 2)	20
Seminar/ Group Discussion	10
Assignment/ Any innovative activity	10
Total	40

Marks distribution for Theory External: 60 marks, Duration of Exam: 03 hours

Pattern	Marks
Long and short questions (Each unit carry 10 marks 10X6=60) •	60
Each Long answer question: 07 marks	
Each Short answer question: 03 marks	
Total	60

M. Sc. I Sem I and Sem II Microbiology Practical Examination scheme

Internal Practical exam: 50 mark		External Practical Exam: 50 marks	
Activities	Marks	performance	Marks
Attendance /student's performance/Activity Report	20	2 Experiments	40
Practical Record Book	10		
Internal viva	10	External Viva	10
Spotting/MCQ	10		
Total	50	Total	50

Books recommended for complete programme of M.Sc. (Microbiology) NEP:

- 1. Biophysical Chemistry Upadhyay&Nath (Himalaya Pub.)
- 2. Practical Biochemistry Plummer (TMH Pub.)
- 3. Principal of Biochemistry Lehninger (CBS Pub.)
- 4. Practical Biochemistry Jayraman (Wiley Estern Pub.)
- 5. Physical Biochemistry Morrison (Oxford)
- 6. Enzyme Dixon &. Webb
- 7. Fundamentals of Enzymology Lewis (Oxford)
- 8. Bacterial metabolism A.H. Rose
- 9. Biochemistry West & Toad
- 10. Out line of Biochemistry Corn & Stump. (Wiley Eastern Pub.)
- 11. Soil Microbiology Alexander (Wiley Eastern Pub.)
- 12. Genes VIII Lewin (Oxford)
- 13. Element of Biotechnology P.K. Gupta. (Rastogi Pub.)
- 14. Fundamentals of Biotechnology Purohit&Mathur (Agro Bot. Pub.)
- 15. Essentials of molecular biology Freifelder D. (Narosa Pub.)
- 16. A textbook of biotechnology Duby (S. Chand Pub.)
- 17. Molecular Biology Freifelder D. (Narosa Pub.)
- 18. Microbial Genetics Freifelder D. (Narosa Pub.)
- 19. Text Book of Molecular Biology Shastry& Other (Macmillan)
- 20. Hand Book of Tissue Culture (ICAR Pub.)
- 21. A textbook of Biotechnology H.D. Kumar (E.W. pub.)
- 22. Basic Biotechnology Rev. Iganacimuthu (TMH Pub.)
- 23. Plant viruses Mandahar (S. Chand & Co.)
- 24. Microbiology Lewis. (Harper)
- 25. Microbiology Fundamentals & Application Purohit. (Agro Botanical Pub.)
- 26. Industrial Microbiology Casida (Wiley Eastern pub.)
- 27. Press Scott and Dunn's Industrial Microbiology.
- 28. Microbiology Anantnarayan&Panikar (Orient Longman)
- 29. A text book of Microbiology, P. Chakraborty (Central Pub.)
- 30. Medical Microbiology Ichhapunani& Bhatia (J.P. Brothers)

- 31. Essential of Medical Mycology Evans & Genitals (Churchill and Livingston)
- 32. Genetics by Strickbeger (Prentice Hall)
- 33. A short textbook of recombinant DNA technology Watson. (Black Well)
- 34. Molecular Biotechnology Prime Rose (Black Well.)
- 35. Immunology by Shetty (Wiley Eastern Pub.)
- 36. Molecular biology of genes. Watson (Begamin Cumming)
- 37. Recombinant DNA technology Rodriguez (Begamin Cumming)
- 38. Advances in molecular genetics. Puhlar. (Begamin Cumming)
- 39. Molecular cloning A lab manual. (Cold spring harbor lab pub.)
- 40. Concept of molecular biology Rastogi (Wiley Eastern Pub.)
- 41. Genetic Engineering SandhyMitra (Macmillan)
- 42. Elementary Microbiology Vol. I Vol. II (Fundamental of microbiology andmicrobial world) Ed. by. H.A. Modi. (AktaPrakashan)
- 43. Applied microbiology. Ed. by H.A. Modi. (AktaPrakashan)
- 44. Environmental Microbiology. Ed. by H.A. Modi (AktaPrakashan)
- 45. Fundamentals of Dairy Microbiology by J.B. Prajapati (AktaPrakashan)
- 46. Bio- Fertilizer.By Vyas&Modi (AktaPrakashan)
- 47. Biochemistry .By D. Das (Academic Pub.)
- 48. Biophysics & Biophysical Chemistry. By D. Das.(Academic Pub.)
- 49. Modern Immunology. By A. Das Gupta (Jaypee Pub.)
- 50. A textbook of microbiology by P. Chakraborty (New Central Book Agency)
- 51. Principal of gene manipulation by Old & Prim Rose (black well pub.)
- 52. Agricultural microbiology by Rangaswami&Bagyaraj (PHI)
- 53. An introduction to recombinant DNA by A.E.H. Emery (ELBS)
- 54. Concepts in Biotechnology by D. Bakasubramuniam and other (University Press.)
- 55. Introduction to genetics Engineering by D.S.T Nicholl (Cambridge)
- 56. Genetics by P.K. Gupta (Rastogi Pub.) 57. Genetics by SandhyaMitra (TMH)
- 58. Applied plant biotechnology by Iganacimuthu (TMH)
- 59. Immunodiagonostics S.C. Rastogi (Wiley Eastern Pub.)
- 60. Immunology by Roitt. (Black well)
- 61. A textbook of Microbiology. R.C. Dubey and D.K. Maheshewari
- (S. Chand &Company)

- 62. 62.Genetics A.V.S.S. Sambamurty (Narosa Pub)
- 63. Concept of Molecular Biology. P.S. Varma& V.K. Agrawal. (S. Chand & Company)
- 64. General Microbiology S.B. Sullia and S. Shantharam. (Oxford & IBH)
- 65. Modern Concept of Biotechnology. H.D.Kumar (Vikas Pub.)
- 66. Fundamentals of Enzymology Price and Steven (Oxford Sci.Pub.)
- 67. Gene VII Lewis (Oxford Science Publication)
- 68. Molecular Cell Biology, Berk, Lipursky, Baltimore, Darnell and Matsuduira(W.H. Freeman and Company)
- 69. Biotechnology Rhem and Reead
- 70. Standard method s of Biochemical analysis S.R. Thimmaiah (Kalyani Publisher).
- 71. Laboratory Manual of Bacterial Genetics Institute of Microbial Technology -Chandigarh.
- 72. A textbook of Industrial Microbiology WulfCrueger and AnnekieseCruger(Panima Publishing Corporation)
- 73 An Introduction to electrophoresis K. Anbalgan (The Electrophoresis Institute, Salem Dist.S. India.)
- 74. Waste water microbiology GabrianBitton (John Wiley & Sons)
- 75. Environmental Microbiology Ralph Mitchell (John Wiley and Sons).
- 76. Microbial Biotechnology Fundamentals of applied Microbiology Alexander N. Glazer, and Hiroshi Nikoidu (W.H. Freeman and Company)
- 77. Gene structure and expression John D. Hawkins (Cambridge University Press)
- 78. Biotechnology John G. Smith, (Cambridge University Press)
- 79. Plant Biotechnology S. Ignacimuthu S.J. (Oxford and IBH, New Delhi)
- 80. Advanced molecular biology R.M.Twyman (Viva book Pvt.Ltd.)
- 81. Introductiory Microbiology J.Heritage, E.G.V. Evans and
- R.A.Killington(Cambridge University Press)
- 82. General Microbiology Schiegel (Cambridge University Press)
- 83. Gene Structure Hawkins (Cambridge University Press)
- 84. Modern Concepts of Biotechnology H.D.Kumar, (Vikas Publishing Pvt.Ltd.)
- 85. A textbook of Microbiology R.C.Dubey and D.K.Maheshewari (S.Chand&Company)
- 86. Biotechnology Applications and Research Edited by Paul Cheremisinoff and Robert Ouellete (TechnomicPub.Co.Inc.)
- 87. Basic and Clinical Immunology Daniel Stites, Abba Terr&TristramParslow(Prentice Hall International INC)
- 88. A Text Book of Biochemistry with Clinical correlation Edited by

- Thomas Devlin(John Wiley and Sons, INC).
- 89. Microbiology Laboratory Fundamentals and Application, George Wistreich(Prentice Hall)
- 90. Microbiology A Laboratory Manual James Cappucino and Natalic Sherman (The Benjamin / Cummings Pub.Co.Inc.)
- 91. Foundations in Microbiology Kathleen Talaro& Arthur Talaro (Wm.C. BrownPublishers)
- 92. Principles of Microbiology Ronald Atlus Mosby.
- 93. Fundamentals of Microbiology Alcamo (Benjamin / Cummings Pub.Co.Inc.)
- 94. Sale and Molecular Biology Concepts and experiments Gerald Karp (JohnWiley and Sons, INC).
- 95. Cellular and Molecular Immunology Abul Abbas, Andrew Lichman& JordanPober (W.B.Saunders Co.)
- 96. Biochemistry-Zubay (WmC.Brown Publishers)
- 97. Life-An Introduction to Biology Beck, Liem& Simpson (Harper CollinsPublishers)
- 98. Genetics A.V.S.S. Sambamurthy (Narosa Publication)
- 99. Water Pollution V.P.Kudesia, (PragatiPrakashan Meerut)
- 100. Physicochemical Examination of Water, Sewage and Industrial waste N. Maniwasakam (PragatiPrakashan, Meerut)
- 101. Textbook of Biochemistry O.P.Agrawal, G.R.Agrawal (Goel Publishing House, Meerut)
- 102. Textbook of Medical Mycology JagdishChander (Interprint, New Delhi)
- 103. An introduction to Plant tissue and Cell culture N.C.Kumar (Emkay PublicationDelhi)
- 104. 104. Short Protocols in Molecular Biology Edited by Ausubel, Brent, Kingston, Moore, Seidman, Smith and Struhl (John Wiley and Sons)
- 105. Molecular Cell Biology Dernell, Lodish and Baltimore, (Scientific American Books)
- 106. Technological Applications of Biocatalysts Published on behalf of Open University and University of Greenwich (ButterworthHeinemann).
- 107. Microbiology-Principle and Explorations J.G.Black (John Wiley and Sons)
- 108. Techniques for engineering Genes Published on behalf of Open University and University of Greenwich (Butterworth-Heinemann).
- 109. Biotechnological Innovations in Energy and Environmental management Published on behalf of Open University and University of Greenwich (Butterworth- Heinemann).
- 110. Medical Microbiology Mims, Playfair, Roitt, Wakelin and Williams (Mosby)
- 111. Principles of Enzymology for the Food Sciences (John Whitaker, Marcel Dekker,Inc.)

- 112. Biostatistics A Foundation for analysis in Health Sciences W.D.Daniels, Johnwiley and Sons.
- 113. Basic Statistics C, Dunn
- 114. How Computers Works Ron White, Techmedia.
- 115. How the Internet works Preston Gralla, Techmedia.
- 116. Bioinformatics 1998 Baxevanis
- 117. Bioinformatics 2000 Haggins & Taylor OUP.
- 118. Fundamentals Biostatistics- Sadguru Prakash, Emkay Publication, New Delhi.
- 119. Bioinformatics for Beginners Dr.K.Mani & N. Vijayraj (KalaiKathirAchchagani Pub. Coimbatore)
- 120. Instant Notes Bioinformatics West head, Parish and Twyman (VivaPublication) New Delhi.
- 121. Schaum's Outlines Biochemistry, Kuchel& Ralston (TMH Edition)
- 122. Schaum's outlines Microbiology (TMH Edition)
- 123. Schaum's outlines Molecular and cell Biology (TMH Edition)
- 124. Principles of Genetics R.H.Tamarin (TMH Edition)
- 125. Biotechnology DNA Protein A Laboratory project in molecular Biology. Thiel, Bissen & Lyons (TMH Edition)
- 126. General Enzymology, Kulkarni and Deshpande, Himalaya Publishing House.
- 127. Modern Approaches to Soil and Agriculture and Environmental Microbiology, Shiva Aithal and Nikhilesh Kulkarni, Himalaya Publishing House.
- 128. Amol Nagrale and Pooja Mankar (Editor: Deshpande, A.R., Patil, Y. and Shrivastava R. Applied Microbiology and Biotechnology Practical handbook Published by My rays book publication centre, powered by International Journal of Microbial Science
- 129. Mayur Thakre, Deepika Jain and Priyanka Jangid (Editor: Dr. V. D. Nanoty, Dr. A. R. Deshpande, Dr. R. R. Pachori) MSc II Semester III practical VI (Immunology and Medical Microbiology) Practical handbook Published by My rays book publication centre, powered by International Journal of Microbial Science.
- 130. Nilesh Sonune, Sonali Gawande, Madhuri Hingankar MSc I Semester I practical II (Analytical Biochemistry and Instrumentation) Practical handbook Published by My rays book publication centre, powered by International Journal of Microbial Science.
- 131. Kavita Chahal, Preeti Kharat, Amol Adhav, Prasad Deshmukh MSc I Semester II practical III (Environmental Microbiology and Biodiversity) Practical handbook Published by My rays book publication centre, powered by International Journal of Microbial Science.

- 132. Shilpa Lokhande Monica Thakre Manish Ahir (Editor: Dr. R. R. Pachori, Dr. S.N. Zodpe, Dr. D. Jaitalkar)MSc I Semester II practical IV (Microbial Enzymology, Bio statistics and Computer applications) Practical handbook. Published by My rays book publication centre, powered by International Journal of Microbial Science.
- 133. Dr. Anand Pande, Ms.Abhilash Deshmukh, Dr.Swati Zodpe, Dr.Harish Malpani and Dr. Dipika Jain MSc I Semester I practical I (Soil Microbiology) Practical handbook Published by My rays book publication centre, powered by International Journal of Microbial Science.
- 134. Ranjit Kumar, "Research Methodology: A Step-by-Step Guide for Beginners", SAGE Publications Ltd., 2011.
- 135. Wayne Goddard, Stuart Melville, "Research Methodology: An Introduction" JUTA and Company Ltd, 2004.
- 136. C.R. Kothari,"Research Methodology: Methods and Trends", New AgeInternational, 2004.
- 137.S.D. Sharma, "Operational Research", Kedar Nath Ram Nath & Co., 1972.
- 138. B.L. Wadehra,"Law Relating to Patents, Trademarks, Copyright Designs and Geographical Indications", Universal Law Publishing, 2014.
- 139. Donald Cooper, Pamela Schindler, "Business Research Methods", McGraw-Hill publication, 2005.
- 140. W.B. Hugo and A.D. Russel: Pharmaceutical Microbiology, Blackwell Scientific publications, Oxford London N .K.Jain: Pharmaceutical Microbiology, Vallabh Prakashan, Delhi
- 141. Chandrakanth Kokare. Pharmaceutical Microbiology experiments and techniques. Latestedition. Career Publications
- 142. Tortora, Funke, Case: Microbiology- An introduction, published by Pearson., 12th edition
- 143. Madigan, Bender, Buckley, Stahl. Brock Biology of microorganisms, 15th edition, published by Pearson
- 144. A textbook of Comprehensive Virology- Dr. N. S. Kulkarni, Dr. Shiva Aithal, Dr. R. D. Joshi published by Himalaya Publishing House
- 145. A textbook of Plant Pathology- George N. Agrios 15th edition
- 146. A textbook of Plant Pathology and Plant Pathogens John A.Lucas
- 147. Fundamentals of Plant Pathology- R.S. Mahrotra, Ashok Aggarwal
- 148. A textbook of Diseases of Crop Plants in India Rangaswami/Mahevevan
- 149. A textbook of Plant Disease Management R.S. Singh, 10th Edition
- 150. A textbook of Essential Plant Pathology Gail L. Schumann, Cleora J.D'Arcy,2nd Edition
- 151. A textbook of Basics Plant Pathology Methods James B. Sinclair, Onkar Dev Dhingra, 2nd Edition

152.A textbook of Modern Plant Pathology – H.C. Dube